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In the compression of porous plastic materials (metals) it is usually a billet that 
has been precompacted that is subjected to treatment, this billet representing a compact 
body, although damaged (pores, microcracks), whose density may amount to 90-95% of the dens- 
ity of the solid phase. Extrusion begins when the pressure of the punch becomes sufficient- 
ly great. The geometric scheme of this process is shown in Fig. i: i) dye; 2) punch; 3) 
billet; 4) container. Steady flow is possible when the initial density P0 of the material 
is so great that the pressure on the punch, required for compression of the material in 
the container, is greater than the pressure required for the onset of extrusion. In this 
case, extrustion will proceed without compaction in the container and the material reaching 
the entry to the dye will be of the same density, i.e., equal to P0. The fact that such 
a situation is possible demonstrates the extrusion of an uncompacted material. Let us add 
that the process is not immediately established, but only after the material which filled 
the inlet to the dye begins to egress from the dye. The process of steady extrusion for 
a compacted material has been dealt with in a number of studies (for example, [i, 2]). 

Yield Conditions. The simplest generalization of the Trask yield conditions on compac- 
ted materials is the condition which, in the space of the main stresses, corresponds to 
regular hexagonal pyramids with a common base lying on the deviator plane [3], and whose 
apices are on the hydrostatic axis (Fig. 2). We will write this yield condition in the 
following form: 

1~ - -  ~ 1 / ( 2 ~ )  + I~l lp~ = t. 

Here o i and oj are the principal stresses; o is an average stress; ~s and Ps are the shearing 
yield points and the omnidirectional uniform compression, with T s and Ps representing the 
known functions of density p (p is the density of the material, referred to the density 
of the solid phase). An infinite pyramid with such bases was dealt with in [4]. 

Definition of Compression Density. We will assume that the dye is a truncated circular 
cone with a flare angle ~0. We will use the spherical coordinate system r,!~, ~ (see Fig. 
i). Let Vr, v~, and v e be the projections of velocity onto the corresponding coordinate 
directions. 

We will limit ourselves to the case in which a uniform material of density P0 enters 
the dye, and we will assume further that the dye itself is immobile. Then, owing to sym- 
metry about the axis of the matrix we can assume that v 8 = 0. Since vr = 0 on the axis 
of symmetry for the dye and its walls, the nature of the flow will be close to a three- 
dimensional radial flow. Consequently, this will be satisfied, provided that the dye is 
not too short. We will further assume, as is usually done in analogous situations, that 
the influence of contact friction makes itself felt only near the walls of the dye, so that 
shear in the main mass of the material can be ignored. We will assume that the radial velo- 
city is a function exclusively of the polar radius: v r = v(r). 

In the free discharge of free-flowing materials through a conical funnel we observe 
the eddying of the flow, i~ a loss of axial symmetry [5]. However, in the compression 
of compacted billets no such phenomena are observed. The hypothesis of axial flow symmetry 
is therefore validated. 

The strain-rate components are: s r = dv/dr, ~ = ~e = v/r. The remaining components 
are equal to zero. Since v < 0, we have e~ < 0, ge < 0. In order to determine the sign 
of er, let us note that for an incompressible and, consequently for sufficiently dense com- 
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pressed materials, e r 
conditions (see Fig. 2), and the directions of r, ~, and 8 correspond to I, 2, and 3. 
pyramid apex 01 lies in the half space o < 0. 

We will write the equations for the line OiA I in the form 

2~s Ps 2Ts Ps 

We w i l l  a s s u m e  i n  ( 1 )  t h a t  o 1 = o r , o 2 = o ~ ,  a n d  03 = o 0.  I t  f o l l o w s  f r o m  ( 1 )  t h a t  o~ = 
o 8 ,  a n d  t h u s  

> 0. These requirements are satisfied by the line OiA l of the yield 

The 

( 1 )  

~/= - o J ~  = t ,  e~ - go = O, 

where 

6TsP s 6"~sP.~ 

A p p l y i n g  t h e  a s s o c i a t e d  l a w  o f  f l o w  t o  ( 2 ) ,  we o b t a i n  E r = %/a ,  Ev = - X / 2 ~ .  E l i m i n a t i n g  
X f r o m  t h e s e  e q u a t i o n s ,  we come t o  t h e  r e l a t i o n s h i p  E r ( 3 P s  + 4~ s )  + 2 E ~ ( 3 P s  - 2z s )  = 0.  
When we substitute the expression for ~8 and E~, we have 

(2) 

We will assume ps 

(3p~ + 4%)(dr/dr) + 2(3p~ - -  2~)(v/r) = O. 

2 92k 
] / ~ ( 1 _ 9 ) 1 / 2 ,  % = 93/2k [ 6 ] .  E q u a t i o n  ( 3 )  w i l l  t h e n  h a v e  t h e  f o r m  

(3) 

(dv/dr)[y~op 1/2 -~- 2(1 - -  p)w2] H- 

H- 2(v/r)[ ]f~pl/~ _ (1 - -  9) 1/3 ] = O. 
(4) 

The continuity equation under these assumptions and on the strength of the steady-state 
nature of the flow represents (v/p)(dp/dr) + dv/dr + 2v/r = 0. It has the integral pvr 2 = 
c I. The constant c I is determined from the conditions at the entry to the dye (v = vl, 
P = Pz for r = RI): c I = pzviR12. Thus, v = plvzR12/(pr2). Substituting this v into (4), 

we derive the equation of relative density 

~/~pl/2 + 2  (i --~)1/2 / 
r * ( 5 )  

The integral of this equation, satisfying the condition 0 = Pz for r = Rz, is written as 

where 
P 

G (P1, P) = ~ g (~) d0 
Pl 

ln(r/R1) q- (2/3)G (9x, p) = 0, 

= ( ~ 3 / 2 )  (arcs in  pll~ _ arcsin p~/2) + (I/2) In (P/P0. 

( 6 )  
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We can see that with some r = R, > 0 the particles of the material reach their limit density 
of p = i. The case R 2 < R, requires special study and is not dealt with here, i.e., we as- 
sume that R~ ~ R,. 

Assuming that p = P2 for r = R 2 in (6), we derive the equation for the determination 
of density P2 at the outlet from the die: 

l n ( R ] R ~ )  - -  ( ~ 3 )  G ( p .  p~) = 0. 

Since we are dealing with a steady flow, p~ = const. 

In Fig. 3 (1-3: Pz = 0.85, 0.75, and 0.6) we see the graphs for P2/Pl for various 
Pl as functions of the magnitude of the reduction for which it has been assumed that 
in (RI/R2) . 

Calculation of the Compression Pressure. We will compile the equilibrium equation 
in accordance with the Hill method [7]. The equation of the virtual powers under these 
assumptions with regard to the nature of the flow yields 

R2 ~0 

r 77  sm ~ + 2 ( ~  - -  %) sin ~ + ~ -  
N 1 0 

(7 )  

We will assume that the normal stresses depend exclusively on the polar radius r, and we 
will integrate over ~. Bearing in mind that v is an arbitrary function of r, we derive 
the equilibrium equation 

da/dr  Jr- 2 ( ~  -- %)/r, + (~r ctg (%/2) = O. (8) 

The quantity TTr is determined from the conditions of friction at the surface of the die. 
According to the Coulomb friction law Try= fI%1 = --/%. After substitution of this expres- 
sion Eq. (8) assumes the form 

rdar/dr + 2 ~ r - - 2 a %  = 0, a = i + 0 . 5 ] c t g ( % / 2 ) .  ( 9 )  

E x p r e s s i n g  G~ i n  t e r m s  o f  G r f r o m  ( 2 )  and  s u b s t i t u t i n g  i n t o  ( 9 ) ,  we come t o  t h e  d i f f e r e n t i a l  
e q u a t i o n  f o r  a r .  U s i n g  ( 5 ) ,  we make t h e  t r a n s i t i o n  f r o m  t h e  i n d e p e n d e n t  v a r i a b l e  r t o  t h e  
a r g u m e n t  p. A f t e r  t r a n s f o r m a t i o n  we d e r i v e  t h e  d i f f e r e n t i a l  e q u a t i o n  
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a%--h(P)~= ho(p), (i0) I kdp 

w h e r e  h ( p )  = [a}(34~p i / 2  - (1  - p)  1 / 2 )  - (3v~p 1 /2  + 2 ( 1  - p ) i / 2 ) ] / [ 3 p ( 1  - p ) l / 2 ] ,  h 0 ( p  ) = 
2pa/[45~1 - p ) 1 7 2 ] .  S o l u t i o n  ( 1 0 ) ,  s a t i s f y i n g  c o n d i t i o n  o r = 0 f o r  r = R 2, h a s  t h e  f o r m  

k - ~P (H(~)) ho (0) exp (-- H (0)) d~ ~(~) = h (0) d~ . 

P2 P2 

(ii) 

The pressure Pl at the entry to the die, required for steady-state extrusion, is deter- 
mined by means of formula (ii) when p = PI: 

P2 

P--~k = exp (H (el)) ~ h0 (p) exp (-- H (0)) d0. 
p~, 

(12) 

Since Pl is associated with P2 by relationship (7), formula (12) expresses the pressure 
Pl at the inlet to the die in terms of the material density Pl at this same point. With 
steady-state extrusion the material coming into the entry of the die must exhibit the same 
density, and this is possible only with an adequately high initial density, when the compres- 
sion stage in the container is absent. If we neglect the elastic strains of the material, 
in the absence of compression the pressure p beneath the punch is equal to the pressure 
Pl at the inlet to the die. The value of p at which compression begins within the container 
is expressed in terms of the initial density [8] as 

p 2P o 
T = "~/~ (i - -  p0) i/2 " ( 13 ) 

T h e r e  may b e  no c o m p r e s s i o n  i f  p i s  l a r g e r  t h a n  P l ,  a s  d e t e r m i n e d  f r o m  ( 1 2 ) .  The maximum 
v a l u e  o f  t h e  i n i t i a l  d e n s i t y  Pe a t  w h i c h  c o m p r e s s i o n  i s  p r e s e n t  i n  t h e  c o n t a i n e r  s a t i s f i e s  
t h e  e q u a t i o n  

2 P e  
V~ (I - peVJ' 

P2 

= exp (H (pc)) S h~ (p) exp (-- II (p)) dp, 
Pe 

(14) 

which is obtained if we equate the right-hand sides of formulas (12) and (13), substituting 
Pl and P0 in these by Pe" Equations (14) and (7), in which Pl and 0e must also be replaced 
by Pe, define Pe as a function of In(RI/R=). 

The graphs of this function for a:= 2.72 (curve i) and 2.15 (curve 2) can be seen in 
Fig. 4. Figure 5 shows the graphs of the pressure at the inlet to the die as a function 
of reduction when Pl = 0.85, 0.75, and 0.6 (curves 1-3, respectively) and a = 2.72. 

This solution is valid only if 0 ~ Ioi ~ Ps [2]. Since the quantity Ioi diminishes 
with increasing movement of the particle toward the outlet from the focus of the strain, 
while density increases, it is sufficient to test out the condition Pl ~ Ps at the entry 
to the matrix. Its satisfaction depends on the initial density and the magnitude of reduc- 
tion. The line ~ in Figs. 3 and 5 determines the maximum magnitude of the reduction in (RI/ 
R 2) as a function of the initial density. 

The solid lines identify those segments of the graphs in which the above-cited solu- 
tion is in force. 

1o 
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A MATHEMATICAL MODEL OF THE PROCESSES OF FATIGUE WEAR 

AND DISINTEGRATION 

!. I. Kudish UDC 531:539.3 

An analysis was conducted in [i, 2] into the behavior of the coefficients of stress 
intensity at the tips of subsurface cracks, located in an elastic overstressed half plane 
whose boundary is affected by normal and tangential contact stresses. These stress-inten- 
sity factors determine the development of cracks in an elastic medium and, thus, the fatigue 
quasibrittle destruction of bodies in contact with each other. Moreover, fatigue destruc- 
tion of bodies depends on the level of material contamination and its resistance to crack 
formation. 

In the present article we have laid out a statistical mathematical model for the pro- 
cesses of fatigue wear and disintegration, based on a study of a uniform mechanism for the 
development of fatigue cracks in quasibrittle materials. 

i. The Suitability of Applyin_~ the Mechanics of Quasibrittle Destruction to the StudE 
of Contact Fatigue. The main premise of the theory of fatigue destruction is the formation 
and the development of scattered microcracks, initiated by various defects (nonuniformities) 
in the material: microscopic pores, pitting, carbides, nonmetallic inclusions, etc. The 
process involved in the development of fatigue cracks around such defects is governed by 
the properties of the material and the stressed state of the material in the immediate vicin- 
ity of the defects, and this, in turn, depends on the normal and tangential stresses at 
the contact, as well as on residual stresses within the material. 

The experimental and theoretical research [2-4] carried out to date enables us to iso- 
late the fundamental factors characterizing fatigue destruction under loads which generate 
no significant plasticity phenomena in the material, and we have specific reference here 
to: normal and tangential contact stresses, residual stresses, the level of material con- 
tamination in the contact bodies and lubricants, the parameters of cyclical resistance to 
crack formation in the material, the structure of the material, etc. 

Let us ascertain the possibility of utilizing the results obtained in the solution 
of contact problems for elastic bodies with cracks, based on the linear mechanics of quasi- 
brittle destruction, insofar as this pertains to our study of the processes of contact fatigue. 

I.i. Relative duration of crack generation and propagation phases. A variety of 
statements can be found in the literature, including those that are contradictory [5-7]. 
The assertion of the predominance of the generation phase, as a rule, is speculative in 
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